联系人:
所在地:
本发明属于图像处理技术领域,主要涉及计算机视觉识别,具体是一种基于辅任务的深度卷积小波神经网络表情识别方法。可应用于人脸表情识别中对表情识别中对表情特征进行学习和分类。解决了现有特征选择算子不能高效学习出表情特征、无法提取更多图像表情信息分类特征的问题。本发明实现为:搭建深度卷积小波神经网络;建立人脸表情集和相应的表情敏感区域图像集;输入人脸表情图像到网络;训练深度卷积小波神经网络;网络误差反向传播;更新网络各卷积核和偏置向量;输入表情敏感区域图像到训练好的网络;学习辅任务的加权比重;获得网络全局分类标签;依全局标签统计识别正确率。本发明兼顾了表情图像的抽象和细节信息,增强表情敏感区域在表情特征学习中的影响力,明显提高了表情识别的正确率,可应用于对人脸表情图像的表情识别。