联系人:
所在地:
摘要:本发明公开了一种基于余弦相似度加权的线性判别分析降维方法,其包括步骤1、读取数据集X中的各样本待获取的初始特征F;步骤2、基于LLE算法,对初始特征F进行初步降维以获得临时特征F′;步骤3、获取样本特征数据即将临时特征F′作为输入特征;步骤4、计算出数据集X中每类样本均值mi和总体样本均值m;步骤5、基于样本特征数据以及mi、m,获得基于余弦相似度加权的类内散度矩阵以及对应的类间散度矩阵;步骤6、创建基于余弦相似度加权的目标函数对样本特征数据进行进一步降维;步骤7、根据步骤6所产生的投影矩阵将输入特征映射到新的维度空间。本发明具有更好的类内耦合度和类间离散度,且达到了更好的降维效果。