本发明为动力电池非光滑迟滞特性补偿的电荷状态估算方法及系统,本法第一步采集电池输出电压和电流,由电池等效电路模型得到各参数的关系式构建神经网络OCV(k)预估模型,求解其中参数,对开路端电压OCV(k)在线估计。第二步SDH模型和RBF2串联组成动态迟滞混合模型。SDH模型以第一步所得OCV(k)为输入,其输出的y(k)和OCV(k)、OCV(k-1)为RBF2的输入,RBF2加权学习间接调整SDH模型的参数,逼近实际的复杂迟滞关系,最终输出在线估算的SOC(k)。本系统由微处理器和安装于电池电路的电流、电压传感器等构成,存储执行本方法的程序,得SOC(k)估算值。本发明借鉴神经网络,补偿了动力电池复杂非光滑迟滞非线性特性,提高SOC(k)在线估算精度。