本发明为一种基于本体知识推理的并行网络流量分类方法,步骤为:Ⅰ、利用决策树算法训练已标记应用类型的网络流量训练样本集,建立网络流量的决策树分类模型,并将其转化成推理规则集;Ⅱ、采用Jena工具包将推理规则集构造成推理机,借助MapReduce并行计算框架,调用推理机进行并行知识推理,挖掘出网络流量本体中网络流量实例和网络应用类型的对应关系,对网络流量实例标记网络应用类型,完成网络流量分类。本发明引入并行处理技术MapReduce,以云计算为网络流量本体知识推理的存储和计算资源,对网络流量实例进行并行化分类,有效提高分类效率;结合机器学习和本体知识推理,构建推理规则集,直接针对网络流量本体中的流量实例进行有效分类。