联系人: 哈尔滨工程大学
所在地: 黑龙江哈尔滨市
摘要:本发明提供的是一种信号识别分类方法。首先利用小波变换的方法对含有较高噪声的原始数据进行降噪,在数据分析中将信号分解为高频和低频信息,采用软阈值法对信号进行消噪,然后进行信号重构;在继承小波变换所具有的良好时频局部化优点的同时,对多尺度分析没有细分的高频部分进行进一步的分解;利用小波包变换在多层分解后的不同频带内分析信号,提取出反映系统状态的特征信息;通过非线性变换将输入信号特征向量变换到高维特征空间,然后在这个高维特征空间求取最优线性分类面。本发明克服了神经网络学习中网络结构难以确定、收敛速度慢以及训练时需要大量数据样本等不足,使其具有面向工程实际应用精度高、实时强的特点。