联系人: 哈尔滨工程大学
所在地: 黑龙江哈尔滨市
摘要:本发明提供的是基于一种复合核函数的高光谱分类方法。输入一幅高光谱图像,类别数为N;以支持向量机为基分类器,同时从所述高光谱图像每个类别中随机地选取s个样本组成训练集,剩余样本组成测试集,确定各参数的变化范围,然后结合K次交叉验证确定支持向量机的最优性能参数,包括惩罚因子和核参数;利用复合核构建策略,构造复合核函数,对支持向量机进行训练;利用训练过程得到的支持向量机判决函数的参数,循环N次,进而得到测试集属于每类别的判决函数值,组成矩阵确定多分类器策略,即找到矩阵每列的最大值。本发明具有可以更好的描述数据集的分布特征,且分类精度相对较高等特点。其参数优化所消耗的时间相对于传统多核学习方法也相对较短。