联系人: 哈尔滨工业大学
所在地: 黑龙江哈尔滨市
摘要:一种减少文本无关说话人识别系统误识率的方法,它涉及一种减少说话人识别系统误识率的方法。本发明解决了现有的文本无关说话人识别系统在开集测试中误识率增大的问题。本方法:利用基准说话人识别系统得到闭集中已知说话人的识别阈值,将闭集中说话人分成男女两组,再将每组用阈值分段的形式把男女两组都再分为多个小组,再找到每个小组的中心分布;在基准说话人识别系统的前端加入粗筛选模块,判定测试语音的性别之后,将待测语音与同性别的小组的中心分布比较,得到待测语音的概率阈值;再用该概率阈值的语音帧进行识别。本方法的识别正确率比原系统提高2%~3%,本方法可用于文本无关说话人识别系统。