摘要:本发明涉及小样本预测问题技术领域,具体的说是一种适用于小样本预测的消极支持向量机模型,本发明将ε‑支持向量机回归模型和消极预测方法结合起来,建立了一种消极支持向量机模型。与ε‑支持向量机回归模型中样本中的所有个体具有相同的不敏感损失函数不同,消极支持向量机模型中的不敏感损失函数取决于样本中个体与待预测个体的距离,为了求解消极支持向量机模型,引入广义拉格朗日函数,得到原问题的对偶问题,通过对对偶问题的求解获得了原问题的解,消极支持向量机模型能够综合传统支持向量机与消极预测方法的优点,不仅泛化性较好,还能改善局部精度。