摘要:本发明提供一种风机齿轮箱故障诊断模型建立方法,用于建立风机齿轮箱诊断模型,首先,获取风机齿轮箱的振动信号,然后对所述振动信号进行平滑和降噪处理;对处理后的振动信号进行分解,提取振动信号的特征向量;将所述振动信号的特征向量分为训练数据集和测试数据集;利用果蝇算法对径向基神经网络模型的参数进行优化,输入所述训练数据集中的振动信号的特征向量获取参数的最优值,生成基于径向基神经网络的风机齿轮箱故障诊断模型并进行测试。该方案中针对RBF神经网络的特点引入优化算法,使得故障诊断效果提高,通过引入人工智能分析技术对提取的特征值进行进一步处理,从而提高故障诊断的效率,从而减少由于故障引起的停机损失。