联系人: 华南理工大学
所在地: 广东广州市
摘要:本发明公开面向变化场景的远红外行人检测方法,该方法基于Boosting-style的归纳迁移学习算法DTLBoost,从辅助数据中筛选样本扩展目标数据集。首先利用基于k近邻的样本重要性度量模型评估辅助数据与目标数据之间的相似度,为辅助数据中的不同样本分配相应的初始权重。在训练过程中,显式地定义成员分类器的预测不一致性程度,并结合当前成员分类器的预测错误率对辅助数据和目标数据样本的当前权重进行迭代更新,从辅助数据中筛选出具有正迁移能力的样本扩展训练集,并鼓励不同成员分类器学习目标数据的不同部分或方面。从而训练出泛化能力更强的集成分类器,增强新场景中行人检测的鲁棒性。