联系人: 华南理工大学
所在地: 广东广州市
摘要:本发明公开了一种基于深度学习的图像高密度人群计数方法,包括下述步骤S1、利用深度学习框架caffe建立深浅互补卷积神经网络;S2、对图像按角度旋转、图像的多尺度缩放、图像的镜像以及图像金字塔缩放的操作实现图像数据增强;S3、将增强后的图像数据进行Gaussian核模糊归一化处理后得到真实的人群密度图,网络输出估计密度图与真实密度图按照损失函数不断迭代训练优化整个网络结构;S4、将人群图片和标签图片输入给网络训练,不断迭代优化最终得到训练好的网络模型。本发明设计了一个端到端的卷积神经网络,通过给定一张图片用于输入,输出该图片对应的估计的密度图,进而得到估计的人群的数目,通过输出密度图,保留了更多的有用的信息。