本发明公开了一种利用机器学习预测复杂疾病易感位点的方法,包括以下步骤(1)收集已知的复杂疾病易感位点作为机器学习模型的阳性集,根据阳性集推测与复杂疾病不相关的位点作为阴性集,并进行表观调控元件的注释;(2)利用机器学习建立复杂疾病表观调控模型;(3)根据建立的模型,对全基因组范围内全部的位点就进行预测,得到最终的预测结果作为复杂疾病的潜在易感位点。本发明方法将表观遗传学信息和基因组DNA信息结合起来,通过机器学习提取表观调控元件特征,进而在全基因组范围内预测复杂疾病的易感位点,可显著提高找到的易感位点所解释的遗传力,为后续设计药物和疾病检测提供了潜在的靶标。