本发明涉及一种不完备系统故障诊断的生成粒子滤波器方法,在粒子滤波器中通过设计一种抽象的未知故障模式描述所有的系统未建模动态,通过提取粒子集特征判断当前模式是否为未知模式。如果为已知模式,则利用常规粒子滤波器方法对系统进行诊断;如果为未知模式,则根据积累的样本利用神经网络学习并构造新模式的状态转移模型,并将新模式加入到故障模式集合中,构造出新的扩展故障空间。此后,粒子滤波器在扩展后的故障空间中对新的数据进行诊断。该技术方案在粒子滤波器框架下结合神经网络实现,针对不完备混合动态系统,不仅可以诊断已知故障,还能识别和学习新的故障模式,能提高故障诊断系统在实际应用中的可靠性。