[00007330]一种基于路径张量分解的知识图谱表示学习方法
交易价格:
面议
所属行业:
分析仪器
类型:
发明专利
技术成熟度:
正在研发
专利所属地:中国
专利号:CN201610858350.0
交易方式:
完全转让
许可转让
技术入股
联系人:
周仁国
进入空间
所在地:
福建厦门市
- 服务承诺
- 产权明晰
-
资料保密
对所交付的所有资料进行保密
- 如实描述
技术详细介绍
摘要:本发明公开一种基于路径张量分解的知识图谱表示学习方法,包括如下步骤步骤1,提取知识图谱中的实体集、关系集和三元组集,把满足三元组的实体集、关系集嵌入到低维连续向量空间;步骤2,通过PRA算法获得实体间的路径;步骤3,在全部实体可能存在的路径上均进行张量分解,计算分解损失函数值;步骤4,重复步骤3,直至达到收敛的预设值或迭代最大次数;步骤5,如果达到迭代最大次数或收敛于预设值,则进入下一个三元组相关的路径计算,重复步骤2至步骤4,直到训练集全部的三元组都被执行;步骤6,输出训练模型中相应的实体集和关系集。此种表示学习方法可提高知识发现的推理准确性,提高预测精度。