本发明公开了一种通过深度卷积神经网络进行短文本间相似度计算的方法,目的在于,利用短文本中出现的每一个词语计算短文本间的相似度,使相似度的值计算的更加准确,所采用的技术方案为1)把若干短文本表示成若干个矩阵,用相应的词向量依次替换文本中的每个单词,得到一个有序的向量序列,视为一个矩阵;2)对两个表示目标短文本的矩阵生成其相似矩阵;通过对词向量之间的余弦相似度进行排列,得到其相似矩阵;3)把相似矩阵的行和列平铺成相同维度;4)把相似矩阵降维成一个值作为相似度;对于所有同维度的相似矩阵,通过深度卷积神经网络对相似矩阵进行训练降维,再通过多层感知机计算相似程度,来代表相似度的值。