本发明公开了一种基于深度神经网络的细胞追踪方法,涉及图像处理技术领域,解决连续的显微镜细胞图片序列中细胞追踪的问题。本发明包括收集细胞图片数据,裁出细胞数据,使用卷积神经网络提取细胞特征,获得一个初始化的多任务观测模型;给定显微镜图片序列的第一张图片和细胞位置,在下一帧图片中获取第一张图片中细胞位置附近的候选细胞位置;在第一张图片上采样正样本和负样本,训练初始化的多任务观测模型,并对候选细胞位置进行预测,得到细胞的预测相似度概率值;预测相似度概率值最大的候选细胞位置作为下一帧图片的细胞位置,将最大预测相似度概率值和对应的细胞位置保存到一个模型更新策略中,进行阈值进行比较。本发明用于细胞的追踪。