联系人: 苏州大学
所在地: 江苏苏州市
摘要:本发明涉及一种基于神经网络与约束图搜索算法的OCT图像分割方法,为了精确的分割视网膜层与新生血管而设计。本发明基于神经网络与约束图搜索算法的OCT图像分割方法,包括得到OCT图像特征训练神经网络分类器;多分辨图搜索算法获得最终的SF1;提取OCT图像的24个特征,使用神经网络分类器找到初始表面S1,S2,…,S8;根据初始边界S2至S8,使用约束图搜索算法依次找到精确的SF2至SF8;在SF7与SF8之间分割新生血管与积液,本发明基于神经网络与约束图搜索算法的OCT图像分割方法,操作简单、检测结果准确。克服现有的对于病变OCT图像分割算法识别率较低、分割效果较差等问题。