联系人: 苏州大学
所在地: 江苏苏州市
摘要:本发明公开了一种彩色图像重构与识别方法及系统,利用无标签的彩色图像训练样本进行彩色散度矩阵构造,对彩色图像进行二维主成分学习,通过一个特征分解问题得到投影矩阵,完成特征降维,将降维后的数据输入最近邻分类器,再将测试样本嵌入到投影空间进行特征提取,输入至最近邻分类器进行相似性度量,输出测试样本的类别,得到最准确的彩色图像识别结果。通过优化一个无监督的特征问题实现彩色图像特征的直接降维,降低了时间复杂性,使基于彩色图像特征提取的识别过程快速,同时可有效保持图像像素中包含的重要彩色信息和拓扑结构。此外,投影方向可有效用于彩色图像重构,通过选取一定数量的投影向量,可得到清晰的彩色图像重构结果。