本发明属于数据挖掘技术领域,一种基于LDA模型的地铁站点功能挖掘方法,步骤如下:1)数据收集:包括地铁刷卡数据、地铁POI数据等。经过筛选提取预处理以后,得到实验所需的潜在主题分布向量,以保证分析结果的普适性;2)语义挖掘:应用LDA主题模型,以乘客出行模式分布矩阵和POI相对含量矩阵为输入挖掘动静语义;3)站点聚类:在功能挖掘方面,本发明使用先进的聚类算法获得按功能的站点聚类簇;4)站点分类标识:本发明从类间客流转移、地理功能占比分布、簇间相似度3个角度提出站点功能标识方法,使得分析结果权威可靠。以上海地铁为例进行的地铁站点功能挖掘实验表明,本方法对于处理类似问题具有出色表现。