本[发明专利]公开了一种利用EEG‑NIRS融合特征的动作意向分类方法,包括以下步骤:步骤一、对采集到的脑电(electroencephalo‑graphy,EEG)信号做预处理;步骤二、对采集到的近红外光谱(near‑infrared spectroscopy,NIRS)信号做预处理;步骤三、对EEG信号提取特征;步骤四、对NIRS信号提取特征;步骤五、将步骤三和步骤四得到的特征分别作归一化处理,再进行特征融合;步骤六、采用模式分类算法对融合后的特征进行分类。本[发明专利]将两种单模态的EEG和NIRS特征分别进行归一化,进而串联成一个融合特征,将EEG和NIRS包含的信息有效结合。与现有技术相比,本[发明专利]中提出的方法有如下优势:结合运动意向分类问题,充分利用EEG的高时间分辨率和NIRS较高的空间分辨率,特征简单有效,形成信息的互相补充,提高分类的性能。