X为了获得更好的用户体验,请使用火狐、谷歌、360浏览器极速模式或IE8及以上版本的浏览器
关于我们 | 帮助中心
欢迎来到天长市科技大市场,请 登录 | 注册
尊敬的 , 欢迎光临!  [会员中心]  [退出登录]
成果 专家 院校 需求
当前位置: 首页 >  科技成果  > 详细页

[00082450]一种基于无监督聚类和度量学习的迁移学习方法

交易价格: 面议

所属行业: 其他教育休闲

类型: 发明专利

技术成熟度: 正在研发

专利所属地:中国

专利号:CN201711447557.X

交易方式: 完全转让 许可转让 技术入股

联系人: 科小易

进入空间

所在地: 广东佛山市

服务承诺
产权明晰
资料保密
对所交付的所有资料进行保密
如实描述

技术详细介绍

本[发明专利]涉及一种基于无监督聚类和度量学习的迁移学习方法,先准备源域样本DS和目标域样本DT;再使用主成份分析方法降低全部样本的维度;然后对源域样本DS进行无监督聚类,将源域样本聚为多个类别;再为每个聚类学习一个度量矩阵G,通过每个聚类和所有的度量矩阵的关联性得出权重矩阵w0,并根据已知标签的目标域样本DTL训练权重矩阵w0,得到最优的权重矩阵W,最后根据权重矩阵W预测未知标签的目标域样本DTU的标签。本[发明专利]使用主成份分析方法来降低样本的维度,降低后续计算的复杂度。使用无监督聚类方法将样本聚为多个类别,更能够反应样本的本质特性。使用带标签的目标域样本来学习权重矩阵,更符合目标域样本的实际情况。

推荐服务:

Copyright  ©  2019    天长市科技大市场    版权所有

地址:滁州高新区经三路

皖ICP备2023004467