[00009634]一种结合深度学习形状先验的MRF图像分割方法
交易价格:
面议
所属行业:
分析仪器
类型:
发明专利
技术成熟度:
正在研发
专利所属地:中国
专利号:CN201710508705.8
交易方式:
完全转让
许可转让
技术入股
联系人:
董维权
进入空间
所在地:
陕西西安市
- 服务承诺
- 产权明晰
-
资料保密
对所交付的所有资料进行保密
- 如实描述
技术详细介绍
摘要:本公开揭示了一种结合深度学习形状先验的MRF图像分割方法,所述方法图像分割问题以能量函数的形式表示,当其最小时对应的则是最优分割结果,且易于以新能量项形式添加其他约束信息。但在基于MRF模型的图像分割研究中,由于自然图像存在阴影、杂乱背景等各种干扰因素,不仅增加了分割的难度,而且分割的效果往往也不好。本方法通过深度学习模型组合底层的特征形成高层的数据抽象特征,引入对目标形状的约束信息和先验信息以更好地解决图像分割问题。对于形状表示,本方法采用研究较多的水平集中的方式,将先验形状表示成符号距离函数,然后经过变换将其以形状能量项添加到分割能量函数中。