本发明属于神经网络技术领域,提供了一种提升卷积神经网络泛化能力的方法及装置,所述方法包括:从训练集中读取一组图像,将所述一组图像映射为多个图像特征向量,并按照图像的类别将图像特征向量分为多个类;根据每个类内的图像特征向量计算整体的类内损失函数;根据每个类内的图像特征向量计算整体的类间损失函数;根据整体的类内损失函数利用反向传播算法更新卷积神经网络中各节点的权值;根据整体的类间损失函数利用反向传播算法更新卷积神经网络中各节点的权值;循环执行上述步骤,直到所述卷积神经网络在所述训练集上收敛或者达到预定的循环次数。通过本发明可保留具有长尾分布的所有数据,充分利用尾部数据丰富的类间信息,提升卷积神经网络模型的泛化能力。