本发明属于数据处理技术领域,尤其涉及一种分布式极限学习机优化集成框架的系统,包括数据分布存储模块、Stack-Autoencoder特征提取模块、分布式计算模块和结果输出模块;数据分布存储模块将数据进行分布式存储,并对ELM隐层进行分析和确定;Stack-Autoencoder特征提取模块对数据进行特征学习,获得压缩化的输入数据,并对输入数据进行归一化处理和特征提取;分布式计算模块根据输入数据进行映射和归约处理得到总体最优权值。本发明对大数据的模式分类更为精确,解决因单层ELM的节点过多造成的过拟合问题使高维矩阵的运算分块并行进行,计算效率得到提高;不用提前将数据读入内存,节省了内存资源。