本发明适用于遥感影像分类领域,提供了一种基于光谱角和欧氏距离的遥感影像分类方法,包括:对遥感影像进行预处理以滤除噪声;筛选用于分类的有效信息;将遥感影像分割为多个同质影像图斑,作为最小研究单元;计算训练样本在各波段的均值和方差;计算测试样本在各波段的均值和方差,进而计算出欧氏距离和光谱角;确定综合相似度为光谱角和欧氏距离的加权和并确定权重;计算分类对象与每种地物的综合相似度,取使得综合相似度最小的地物类型作为分类对象的最终类型。本发明结合两种分类器的优势,实现不同分类方法的互补,并以极小间隔一一验证确定最佳权重,有效提高了分类精度且保证了分类效率,并且实现算法自动化,分类效率高。