本发明涉及一种基于支持向量机的剪接位点识别方法,包括:构建数据集,数据集包括训练数据集及测试数据集;提取训练数据集的剪接位点序列的特征向量,记为第一特征向量;提取训练数据集的剪接位点上游序列及下游序列的特征向量,记为第二特征向量;根据第一特征向量及第二特征向量选取所述训练数据集的特征向量,记为第三特征向量;根据第三特征向量,构建SVM分类器;根据分类器识别所述测试数据集的剪接位点。本发明采用训练数据集构建马尔可夫模型,用该模型参数将训练数据集及测试数据集转换成特征向量,并将该特征向量和剪接位点上、下游密码子使用偏性的特征向量,进行线性组合,以提取剪接位点邻近序列中更多信息,从而提高分类精度。