本发明涉及一种基于机器学习的视频转码方法,将原始视频中编码单元的四叉树分割摸式模型化为若干个不同层次的二进制分类器,然后再选取最优特征集,最后再对特征矢量和最佳的编码参数构成的数据集合进行学习,即将机器学习的方法引入到视频转码中,将视频编码中的参数确定问题转化为分类问题。因而能够根据当前编码单元的大小选取相应的分类器,并将分类概率值与相应的自适应阈值进行比较,从而选取最佳编码参数进行编码。且自适应概率阈值针对不同视频场景自适应调整,因此,能够得到最优的转码速度和转码质量使得转码过程中功耗较小,在保证转码率失真性能的前提下有效降低转码的复杂度。