摘要:本发明涉及基于阈值操作的代价敏感神经网络的警告分类方法,包括S1使用FindBugs工具对目标软件一系列版本的jar文件进行分析,得到目标软件的静态警告;S2对S1获得的静态警告进行标注;S3采用代价敏感的BP神经网络,使用样本集中的样本训练分类器,采用该分类器对样本集中的所有样本进行分类,计算得到用于预测有效警告或误报警告的真实类别概率值,采用阈值操作的方式对真实类别概率值进行调整得到新类别概率值,使用该新类别概率值对样本集中的所有样本进行预测分类。本发明方法在有效警告查全率Recall方面平均提高了44.07%,还能快速达到较高而平稳的查全率,同时较传统神经网络方法能达到更低的分类代价。